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1. INTRODUCTION

The mechanical response of gun propellant is of interest to interior ballisticians since fracture
damage can adversely affect the mass generation rate during the ballistic cycle. Three macroscopic
fracture mechanisms have been identified which include: 1) perforation rupture (hydraulic fractur-
ing), 2) direct grain impact, and 3) intergranular contact stress'. To the author's knowledge, the phe-
nomenon of perforation rupture in gun propellant has not been experimentally investigated by
interior ballisticians although hydraulic fracture studies are common in the rock mechanics litera-
ture2 . Interior ballisticians have investigated fracture by direct grain impact using a Gas Gun Impact
Tester' (GGIT), Drop Weight Mechanical Properties Tester4 (DWMPT), Split Hopkinson Bar Appa-
ratus5 (SHB), and most recently a new High Rate MTS Systems Corporation Servohydraulic Tester
(MTS) which will be discussed in more detail later. Intergranular contact stress fracture phenomena
have been investigated with a variety of bed testers6'- and are primarily devoted to evaluating the
billk response of the propellant bed.

The pressure, temperature, and strain history induced in a propellant bed during ignition and
combustion can be severe and complex; x-ray methods9"10 and in situ pressure pulse monitoring
methods' provide estimates of operational strain rates that approach 10' sec"* and peak pressures that
approach "700 MPa' 2. Operating temperatures will vary with climate and typically range from -46' to

63" Celsius. Over this temperature range, a brittle-ductile transition in propellant response might be
observed as in many materials whose deformation mechanisms are thermally activated.

One objective of propellant testing programs is to relate single grain mechanical property
data such as compressive modulus, absorbed strain energy density, yield stress or strain, et cetera, to
the combustion characteristics (primarily the mass generation rate) of the deformed propellant. The
studies aim to determine if fracture generated surface area is responsible for catastrophic failure and
breech-blow phenomena that sometimes occur during gun firing. Characterization of a material's
mechanical response might also aid in survivability studies of armored weapons systems which are
vulnerable to various forms of attack. An ancillary experimental objective is to provide material
property data for use in numerical hydrodynamic simulations of the ballistic process.

This report describes the mechanical property test results obtained for the room temperature,
uniaxial compressive deformation of M30, XM39 and JA2 gun propellants at strain rates from 10-2
to 250 per second using the Ballistic Research Laboratory's new servohydraulic mechanical proper-

ties tester. Also included are comparisons with data obtained on the Split Hopkinson Bar Apparatus
and Drop Weight Mechanical Properties Tester. Finally, a preliminary viscoelastic characterization
of the gun propellant provides relaxation moduli, secant moduli, and a test for "material" linearity/
nonlinearity.



2. SERVOHYDRAULIC APPARATUS AND DATA ACQUISITION

IIhe High Ri.,.z MTS %,10 Material Test System (Figure 1) consists of a conventional two-pole
press with a servohydraulically actuted ram that operates from quasistatic velocities to a maximum
velocity which approaches 12 m/sec; the maximum velocity imparts a maximum strain rate of 1200
sec' on a 10 mm long specimen. Other essential components include a bell and cone piston assem-
bly which permit fixed amounts of total specimen strain, a lower N2-spring piston designed to absorb
the impact shock, a 60 kN Kistler force gage mounted in the upper moving piston, and an externally
mounted LVDT for displacement measurement. A Thermotron conditioning oven/refrigerator
surrounds both upper and lower pistons and permits temperature testing from -850 to 900 Celsius.
Arbitrary load and/or displacement histories can be imparted to the specimen by computer control.
Raw force and displacement data are acquired, stored, and then analyzed with a Norland 3001 data
acquisition system. Finally, plots of stress and strain versus time, and stress versus strain are printed
on a Da!aproducts dot matrix printer via RS232 port. The data can also be uploaded via RS232 port

- Actuator

Impact Bell

"Specimen

Stage

Impact Cone

Shock Absorbing
Piston & Cylinder

Base

Figure 1. Servohydraulic Test Apparatus with Upper Bell and Impact Cone Piston Assembly.
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to a PC and converted to ASCII format for more sophisticated analysis.

The 60 kN Kistler force gage is calibra:id every 2 to 3 months using a Morehouse Ring
Dynamometer (S/N M-4644); the instrument is certified by the National Bureau of Standards to have
an uncertainty to within .003 percent of the applied load. The maximum uncertainty in force meas-
urement is 2 percent and is determined by comparing the force readings from the Dynamometer with
the amplified signal on the Norland data acquisition system. The uncertainty in the displacement
measurement is within 1 percent as determined by comparison with a National Bureau of Standards
certified displacement dial gage (personal communication with Aaron Anderson, MTS Project
Engineer).

2.1 Apparatus Stiffness. A mechanical idealization of the deformation apparatus (Figure 2)
assumes that all machine components are linearly elastic. Contact nonlinearities due to interface
mismatch are disregarded. The apparatus idealization consists of three spring components in series.
K.. represents the upper machine stiffness and consists of stiffness contributions from the upper
piston, the actuator, the hydraulic fluid, the crosshead and tie rods. K. represents the specimen
stiffness. K. represents the lower machine stiffness and consists of stiffness contributions from the
lower piston, the N2-filled pressure vessel, and the load unit base. The force is assumed to be the
same in each spring, however the displacements in each spring will vary according to their individ-
ual stiffnesses.

In a typical test, the measured displacement, d, must be corrected for stiffnesses K and K•

in order to accurately calculate the displacements in the specimen. Fortunately, gun propellants are
relatively soft in comparison to the apparatus so that the correction is not very large. We can lump

K ~ d = dru + ds+ dm-
tnu

K
S

Kml

F

Figure 2. Mechanical Idealization of the MTS using a Linear Elastic Sprint, Model.
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together the K,, and K,, stiffness contributions and arrive at an apparatus stiffness K. according to

the equation:

1/K = I/K=. + I/K. (1)

where the total system stiffness K is given by:

K = I/(1/K + l/K) = F/d (2)
where

F = total measured force
d = total measured displacement

The apparatus stiffness is determined by performing an experiment using a specimen whose
stiffness K, is very large and hence negligible relative to the ratio 1/K.. A set of seven experiments

was conducted using a hardened steel slug and the average apparatus stiffness was determined to be
K. = 91.87 + 4.8 kN/mm.

2.2 Szored Elastic Strain Energy. The amount of elastic strain energy, W, stored in a cylindrical
elastic rod under applied force, F, is giver by:

W = F2/2K (3)

where the stiffness, K, is given by:

K = AE/L (4)

where

L = rod length
A = rod area
E = Young's modulus

We can determine how the elastic strain energy, W, is partitioned between the apparatus and
a propellant grain duringn ,ompression by first determining a "typical" propellant grain stiffness. The
stiffness of a grain of XM39 at 250 sec" with crossectional area, A = 24.5 mm2, length, L = 6.5 mm,
and compressive modulus, E = 3.5 GPa, is K = 13 kN/mm. At a strain rate of 250 sec-, XM39
yields at about 47 MPa or an axial force, F = 1.15 kN. Hence from Equation 3 the elastic energy
stored within the grain at yield is .051 kN-mm. Using the apparatus stiffness and Equation 3 we see
that the energy stored in the apparatus at yield is .0072 kN-mm which is 7 times less than the elastic
strain energy stored in the specimen, or only 12 percent of the total system elastic strain energy.

This observation has important consequences for studying the post-failure response of gun
propellant since in stiff testing machines the elastic strain energy pre. it in the apparatus is negli-
gible relative to the specimen and failure of the specimen can proceed tnder stable conditions.
Jaeger and Cook2 regard the failure process as being stable if the post-failure material stiffness is
less tnan that of the apparatus. Under these conditions the complete stress-strain curve can be cap-
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tured. However, in soft testing machines the elastic strain energy siored in the apparatus is violently
released during specimen failure and hence the complete post-failure response of the specimen
cannot be obtained.

Specimen failure for brittle materials is defined2 in the classical macroscopic sense as a con-
unuous process that begins at the mi.xrimum stress (point wher, the tangent modulus of the stress-
strain curve is zero) and continues for an indefinite period (tangent modulus of the stress-strain curve
is negative) until ultimate failure or the complete loss of load bearing capacity occurs (Figure 3). If
ulti-imaie failure occurs at relatively small strains the material is termed brittle. Ductile materials ul-
timately fail at relatively large strains and can be accompanied by significant workhardening behav-
ior. It is important for interior ballisticians to be able to identify when a particular propellant begins
to fTacture, since it is at this time that additional surface area becomes available for burning. How-
ever, by examining stress versus strain curves alone, no information can be obtained regarding the
mechanism of deformation whether it be fracture, compaction, crystal plastic flow, bond stretching,

100.0-
MaXiMM stress

Sbittle

80.0 "worksftening

yieldilsatress ductile

60 .0- , ' k hrdaning

S 40.0-

/tangent modislus

20.0 ultimate

failure

ultimate

ailueI I
10.0 20.0 30.0 40.0 50.0

Strain (Pct)
yield strain

Figure 3. Macroscopic Brittle-Ductile Response for Materials.



et cetera, or how the relative contributions of the mechanisms are partitioned in pressure, tempera-
ture, and strain space. Deformation by fracture can be identified by detailed micromechanical obser-
vation, using, for example, the scanning electron microscope or optical microscope. Once fracture
has been identified as a dominant deformation mechanism for a particular propellant then an impor-
tant experiment would be to perform a series of tests where different specimens are deformed to
increasing amounts of fixed total strain at various strain rates and temperatures; the new servohy-
draulic test apparatus has this capability because of its unique bell and cone impact housing design.
The deformed grains could then be burned in a mini-closed bomb1 and the combustion characteris-
tics (burning rate, mass generation rate, et cetera) could be quantitatively related to one or more
gross mechanical property parameters. Research is presently under way to investigate the effects of
strain rate, temperature, and degree of fixed axial strain on the mass generation rate and burning rate
of M30 and JA2 propellants.

3. EXPERIMENTAL PROCEDURE

Right circular cylinders of M30, XM39, and JA2 (abbreviated lots are 67878, 1333, and S 110
respectively) are cut from granular propellant stock using an Isomet diamond saw. Care is taken to
cut the ends parallel to c ich other and perpendicular to the cylinder axis so that the compressive de-
formation is coaxial and uniform. Specimen dimensions are measured with a vernier caliper and
length to diamneter ratios (I/D) average about 1:1 (Table 1) for each of the propellant formulations1'
(Table 2).

Table 1. Average Lengths, Diameters, and Perforation Diameters of Propellant
Specimens.

Length (mm) Diameter (mm) L/D Perf.-Diam. (mm)

M30 9.581 ± 0.34 7.042 ± 0.059 1.361 .686
XM39 6.929 + 0.37 5.643 ±0.046 1.228 .305
JA2 9.091 + 043 8.719 + 0.068 1.043 .483
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Table 2. Percent Composition of JA2, M30, and XM39 Gun Propellants.

Propellant JA2 M30 XM39

Component % % Component %

Nitrocellulose 59.0 28.0 RDX (ground) 76.0
NC Nitration Level 13.0 12.6 Cell. Acetate Butyrate 12.0
Nitroglycerin 15.0 22.0 Acetyl Triethyl Citrate 7.6
Nitroguanidin, 0.0 48.0 Nitrocellulose 4.0
Ethyl Centralite 0.0 2.0 NC Nitration Level 12.6
Diethylene Glycol Ethyl Centralite 0.4
Dinitrate 25.0 0.0
Akardit 11 1.0 0.0

All tests are performed at ambient pressure (0.1 MPa) and temperature (220 Celsius). Molyb-
denum disulphide, MoS2 9 is applied sparingly to the specimen ends prior to testing in order to reduce
frictional end effects and specimen barreling. A minimum ot five specimens are deformed to 50
percent strain, at nominal strain rates of .01, 1, 100, and 2503 per second.

3.1 D The raw force and displacement data are reduced and converted to
stress versus strain plots as previously reported"3 . Two additions to the standard data reduction
program include an apparatus distortion z-rnection and an algorithm for automatically picking the
yield stress. The net axial stress is determined using the initial cross-sectional area of the specimen
minus the perforation area. In future work, a stress correction due to increasing crossectional area of
the specimen can be made after the Poisson's ratio is determined using a lateral deformation gage.
The raw force and displacement voltages versus time, stress and strain versus time, calibration
factors, specimen dimensions, and the following mechanical parameters are calculated and stored on
floppy disks: maximum stress, stress and strain at yield, strain rate, compressive modulus, strain
energy density absorbed per unit volume at yield, strain energy density at selected strain increments
past yield, ratios of subsequent strain energy density values relative to the strain energy density at
yield. Macroscopic yield is defined5 .13 as the stress level where the material most rapidly loses its
ability to sustain load; the yield stress level is determined by finding the minimum in the second
derivative of stress with respect to time. Since the second derivative data is somewhat noisy, an n-
point smoothing algorithm is used so that a consistent, operator-independent criterion exists for
picking the minimum. Equally arbitrary definitions of the yield point, such as the proportional limit
definition (stress level at the end of the linear range) or offset method definition (stress level after 0.2
percent offset strain), were not viable candidates since for the former definition a suitable linear
range is difficult to determine for these materials and for the latter definition the yield would occur at
fractions of a percent of maximum stress and the strain dependence of yield could not be investi-
gated. The choice of the yield point, as it reiates to strength loss due to fracture, should ultimately
be constrained by microphysical considerations.
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3.2 Grain Geomety Effcrts. Each of the propellant grains contains seven perforations so
that during axial compression a highly inhomgeneous stress field could develop due to internal
stress concentrations and noncoaxiality of the perforations with the grain axis. The results of this
study provide data regarding the mechanical or structural response of propellant grains which are
useful for evaluating how grains might behave during axial impact in a gun cartridge. In onler to
determine material or constitutive properties of gun propellant, for use in numerical simulationr of
the ballistic process, tests on solid propellant grains could be performed in order to ensure homoge-
neity of the stress field within the specimen. The determination of material properties is necessary in
order to predict the location and intensity of pressure instabilities due to fracturing in a propellant
bed. A future study is planned to evaluate the degree to which the propellant response is affected by
grain geometry. This will include a study of the propellant response by varying the length to diame-
ter ratio, solid versus perforated grains, lubricated versus unlubricated end conditions, inultiaxial
stress states including compression, tension and possibly torsion.

4. EXPERIMENTAL RESULTS

Summaries of the experimental results for the uniaxial compression of M30, XM39 and JA2
as a function of strain rate appear in Tables 3,4,and 5 respectively. Synoptic plots of axial stress
versus strain as a function of strain rate, reveal that M30 and XM39 reach a maximum stress and
then work-soften in response to a constant strain rate input (Appendix A). JA2 responds by continu-
ally work-hardening throughout its deformation history. All three propellants behave in a macro-
scopically ductile fashion and sustained over 40 percent axial shortening.

Table 3. JA2 Servohydraulic Compression Test Results. Y is the Yield
Point and is defined as the Stress Level Which Corresponds to the
Minimum in the Second Derivative of Stress with Respect to Time.

Nominal Strain Rate (sec"')

10.2 1 100

Max. Stress (MPa) 22.65 ± 1.30 37.75 ± 6.35 61.69 ± 2.62
Stress @ Y (MPa) 4.49 ± 0.64 9.26 ± 1.73 14.45 ± 1.58
Strain @ Y (%) 3.48 + 0.75 3.25 ± 0.59 3.06 ± 0.37
Strain Rate (sec"') .0098 ± .001 0.97 ± 0.04 92.06 ±15.27
Modulus (GPa) 0.19 + 0.03 0.41 + 0.11 0.77 ± 0.19
Energy @ Y (MPa) 0.06 ± 0.02 0.12 ± 0.05 0.15 ± 0.02

200 250

Max. Stress (MPa) 77.96 ±11.81 72.29 ± 9.26
Stress@ Y (MPa) 18.30± 1.38 17.30± 1.50
Strain @ Y (%) 3.05 + 0.84 3.23 ± 0.63
Strain Rate (sec 1) 200.30 + 8.21 244.50 ± 3.32
Modulus (GPa) 0.77 ± 0.08 0.79 + 0.09
Energy @ Y (MPa) 0.24 + 0.07 0.21 + 0.05



Table 4. M30 Servohydraulic Compression Test Results.

Nominal Strain Rate (sec"1)

102 1100 250

Max. Stress (MPa) 41.07 ±28.82 51.41 ± 2.78 94.55 ± 2.86 105.44 ± 2.45
Stress @ Y (MPa) 28.82 ± 3.91 43.25 ± 3.21 60.77 + 4.77 75.50 ±11.44
Strain @ Y (%) 4.37 ± 1.45 5.08 ± 2.07 4.55 ± 0.30 3.65 ± 0.81
Strain Rate (sec-1) .0096± 0.001 0.96 0.03 118.20±13.32 240.50 5.65
Modulus (GPa) 1.21 ± 0.40 1.51 ± 0.57 2.34 ± 0.24 2.76 ± 0.22
Energy @ Y (MPa) 0.43± 0.25 0.86± 0.44 0.80± 0.12 1.18±t0.59

Table 5. XM39 Servohydraulic Compression Test Results.

Nominal Strain Rate (sec')

102 4x19 2  1 100

Max. Stress (MPa) 28.26 ± 0.85 28.89 ± 0.61 39.65 ± 1.79 71.51 ± 2.18
Stress @ Y (MPa) 14.68±t 1.27 18.84.± 2.123 5.93 2.60 55.93.± 3.73
Strain @ Y (%) 2.77 ± 0.98 2.86 ± 0.56 3.66 ± 0.53 3.52 ± 0.22
Strain Rate (sec') 0.01 ± 0.0002 0.04 ± 0.0003 0.97 t 0.02 104.60 ± 3.31
Modulus (GPa) 1.13 ± 0.35 1.08 ± 0.09 1.73 ± 0.04 2.98 ± 0.78
Energy@ Y (MPa) 0.12± 0.04 0.17 ± 0.07 0.49 ± 0.10 0.57 ± 0.17

250

Max. Stress (MPa) 65.91 ± 7.92
Stress @ Y (MPa) 49.82 ±15.06
Strain @ Y (%) 3.26 ± 1.92
Strain Rate (sec".) 246.10± 8.50
Modulus (GPa) 3.07 ± 1.27
Energy @ Y (MPa) 0.37± 0.13
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Thu compressive modulus (Figure 4) and the yield stress (Figure 5) both increase as a func-
tion of strain rate for all three propellants, yet the strain at yield remains relatively constant (Figure
6). Note that even though the moduli of M30 and XM39 are nearly identical, the strain energy
density, 'r, absorbed at yield by the M30 propellant, is 2 and 5 times greater than that of XM39 and
JA2 respectively (Figure 7). This observation could have important consequences for the design of
new fracture resistant propellants as it appears that the triple base M30 propellant has higher yield
stress levels than either the dcuble base JA2 or single base XM39 propellants. However, visual
inspection of deformed specimens of M30 and XM39 propellant reveals that macroscopic fractures
develop in specimens tested at all strain rates above I02 sec'•; none of the JA2 specimens macro-
scopically fractured at any of the strain rates tested. Furthermore, rapid snapshots taken at 10 frames
per second during the axial compression of specimens of XM39 reveal that macroscopic fractures
begin to develop after about 2 seconds, or at 28 MPa and 7.7 percent axial strain. However, the stress
and strain at yield determined using the minimum second derivative of stress with respect to time
criterion indicates that the yield stress and strain occur at only 18.8 Mpa and 2.9 percent respectively
(Table 5). Since the appearance of macroscopic fractures does not correspond with macroscopic
yield of the specimen, detailed microscopic observations are needed to define when microfracturing
begins.

The average compressive moduli of M30, XM39, and JA2 at room temperature and a strain
rate of 250 sec', determined using the Servohydraulic Tester, compare well with the moduli deter-
mined using the Drop Weight Mechanical Properties Tester (Table 6). However, the stress versus
strain responses considerably differ, particularly in the post-failure region for the work-softening
M30 and XM39 propellants (Figures 8a and 8b). The difference in material response is attributed to
the differing input strain histories between the devices. The input strain rate on the MTS is computer
controlled and remains relatively constant throughout the deformation history. However, the strain
rate on the DWMPT remains constant only to yield, then becomes zero, negative, and begins to
increase again as the upper load piston rebounds off the specimen preparing for a second impact.
Multiple ram impacts will reoccur until the total kinetic energy of the ram is dissipated in work done
in deforming the propellant, and frictional and impact sound losses. Figure 8c illustrates a typical
multiple impact response for JA2. Since the response is ductile, the post-yield stress-strain curves
compa1'e more favorably with that of the MTS since instabilities present during macroscopic failure
are not present.

Table 6. A Comparison of Compressive Moduli Determined Using the MTS and
DWMPT at Room Temperature and Strain Rate of 250 sec"'.

M30 XM39 JA2

DWMPT Modulus (GPa) 2.74 4.08 .782
MTS Modulus (GPa) 2.76 3.07 .790
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5. ABSORBED STRAIN ENERGY DENSITY

5.1 Cumulative Absorbed Strain Energy nsu. The cumulative strain energy density per
unit volume, c, absorbed by M30, XM39, and JA2 propellants at increasing increments of strain (to
30 percent) versus strain rate are illustrated in contour maps and 3-dimensional surfaces (Appendix
B). The cumulative strain energy density was greater for the work-softening M30 and XM39 propel-
lants with maxima at 23 and 16 MPa respectively. This is because much higher stress levels were
attained during the deformation of these materials. The maximum strain energy density for the work-
hardening JA2 propellant is only 7 MPa at 30 percent strain. All three propellants are macroscopi-
cally ductile yet M30 and XM39 propellants fractured and work-softened and JA2 flowed and
work-hardened during deformation. However, the macroscopic ductility in JA2 could be accommo-
dated by a microphysical fracture deformation mechanism and future experiments carried to fixed
amounts of total strain are planned in an effort to study the phenomenon.

5.2 Incremental Absorbed Strain Energv Density. The normalized incremental strain
energy density, F, absorbed by M30, XM39, and JA2 propellants determined at increments between
0 and 10, 10 and 20, and 20 and 30 percent strain versus strain rate are illustrated in contour maps
and 3-dimensional surfaces (Appendix C). The contours in these plots are normalized to the maxi-
mum cumulative strain energy absorbed as described in the previous section. The dimensionless F
contour maps reveal that the M30 and XM39 propellants possess a saddle with maximum r of about
.4, and strain increment between 10 and 20 percent. This behavior is expected since the stress strain
curves for M30 and XM39 work-soften after the maximum stress has been reached. The F contour
map for JA2, however, does not possess a saddle but continually increases; this behavior is also
expected for macroscopically ductile work-hardening materials.

6. TIME DEPENDENT MECHANICAL PROPERTIES

The following section includes some initial results on the viscoelastic characterization of
M30, XM39, and JA2 propellants. Since perforated specimens were tested, the measured response
contains both structural and material contributions. It may be impossible to determine the intrinsic
material properties for these materials since extruded propellants with multiple perforations possess
a directional anisotropy not present in the solid material. Furthermore, the determination of constitu-
tive equations for materials requires that the boundary value problem be homogeneous, viz., the
stresses within the continuum be identical to those applied at the boundary. Real world testing
conditions only approach this requirement, and in the final analysis the results of testing perforated
specimens will be no better than for any material that contains large internal voids or pores.
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6.1 ILinear Viscoelasticity Theory. A material exhibits linear behavior in response to a
generalized input if the following two conditions are satisfied:

1) R[I. + Ik] = R[I] + R[IU Superposition Property

2) R[cl] = cR[1] Homogeneity Property

where I, I, and k are general input histories and the it.t.:uts [ ], are used to denote that the current
value of R depends on the history of I and not just its instantaneous value. Following the notation of
Schapery'4.", if a material is linear, the response R(t) to a general input I(t) can be written as:

t

R(t)--- % R1 (t-t)d.l dI t

The above relation connecting input and response is commonly referred to by various names such as,
hereditary integral, superposition integral, Duhamel's integral, or convolution integral. R,(t) is the
unit response function for a nonaging material (viz. a material whose material properties do not
depend on the time they are tested). In a creep test, Rr(t) = D(t) = e(t)/a° where D(t) is the creep
compliance and is experimentally determined by performing a creep test while applying a constant
stress input, I = a.H(t) (Figure 9). H(t) is the Heaviside step function defined as: H(arg) = 1, arg >
0; H(arg) = 0, arg < 0. In a relaxation test, R.(t) = E(t) = a(t)/c, where E(t) is the relaxation modu-
lus and is experimentally determined by performing a relaxation test while applying a constant strain
input, I =EOH(t) (Figure 10).

Some common linear creep compliances that are often used in the literature include the
power law D(t) = Do + Ditt", and Maxwell D(t) = Do + t/71 viscoelastic rheologies. Writing the con-
volution integral in terms of one-dimension yields for strain and stress:

C (t) f- D (t - ,r) dl dT 5CKT

t

;(t)= f E (t- 't) dl dt (6)

where D(t) is the creep compliance and E(t) is the relaxation modulus. Once the relaxation modulus
is experimentally determined, the stress as a function of time is expressed for an arbitrary strain
input with Equation 6. Equations 5 and 6 form the one-dimensional constitutive equations for a
linear viscoelastic nonaging material.

6.2 Constant Strain Rate Test. The input for a constant strain rate test is given by:

E(t) = c t H(t) (7)
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where c is the constant strain rate. Substitution of Equation 7 into Equation 6 with a change of vari-
ables u=t-T, and assuming that E(t- T) = 0 for t <,r gives:

t

a(t) - c f E(u) du t > 0 (8)

0

differentiating both sides of the Equation 8 with respect to time gives the relaxation modulus:

E(t) = da/dc (9)

This shows that the relaxation modulus is obtainable from a constant strain rate experiment and is
equal to the tangent modulus, which is the local tangent to the stress versus strain curve taken at
times, t = &/c. It can also be shown that the relaxation modulus is related to the secant modulus,
defined as:

E = a/e (10)

T- e secan i.,odulus can be written by substituting Equation 8 into Equation 10, which gives:
t

E,= 1/t f E(u)du t > 0 (11)

0

Differentiating both sides of Equation 11 and solving for E(t) gives:

E(t) = E + t dEjdt (12)

Equation 12 can be written as:

E(t) = E[ [1. + (dE,/E)/(dt/t)] (13)

Using a property of logarithms"'" (i.e. In 10 d(log,0x) = dxlx), Equation 13 can be rewritten as:

E(t) = Eý [1. + d(log,0E,)/d(log,0t)l (14)

Note that if the slope of the logE, versus logt curve is much less than one, then the relaxation
modulus, E(t), is nearly identical to the secant modulus, E,. Furthermore, since both E(t) and E are
both functions only of time, if any strain level dependence is observed the material is nonlinear.

To determine the relaxation moduli, secant moduli and to test for linear/nonlinear viscoelas-
tic behavior for the M30, XM39, and JA2 propellants, we use the constant strain rate data and plot
the log of the secant modulus (Equation 10) versus log time (Appendix D). The time is determined
by t = c/c, where e is the fixed strain level and c is the strain rate. As an example, the relaxation and
secant moduli are determined from the JA2 test data taken at different strain rates (Figure 11) and
plotted as a function of time at strain levels of 5, 10, 20 and 30 percent in Figure Dl. The lines in
Figure Dl represent the mo.d-uli detennined at different strain levels as defined by the symbols in
Figure 11. By using data taken from several tests over a wide range of strain rates, the relaxation
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and secant moduli can be determined for the material for times which range over many orders of
magnitude. All three propellants exhibit a strong nonlinear response as evidenced by the strain level
dependence of the secant modulus. The slop .s of the logE, versus logt curves are much less than
one, so the relaxation modulus (dashed lines in Appendix D) can be well represented by the secant
modulus. Data from the Split Hopkinson Bar are also included and indicate good experimental
agreement with secant moduli determined over a wide range of strain rates from 10r2 to 10 ". The
room-temperature relaxation modulus for these propellants can be represented by a power-law of the
form:

E(t) = Et r (15)

Laplace transforms can be used to show that a good approximation of the creep compliance is:

D(t) = E(t)t (16)

which is in error by at most 10 % when 0 < n <.25 in Equation 15'1. For linear materials, the relaxa-
tion and creep compliances are directly substituted into Equations 5 and 6, and the one-dimensional
stress and strain response for the propellant can be determined for any arbitrary stress or strain input
history. This procedure cannot be applied for nonlinear functionals however, but can be treated using
the multiple integral representations of nonlinear viscoelasticity"6 or an alternative formulation"7

whereby the relaxation moduli are vertically shifted to form "master" curves. This procedure is
similar to the horizontal time-temperature shifting procedure performed on t~hermorheologically
simple materials' 4.

7. SUMMARY AND CONCLUSIONS

This report describes the preliminary results of a series of mechanical property tests for the
room temperature, uniaxial compression of M30, XM39, and JA2 gun propellants at st ain rates of
.01, 1, 100, and 250 per second using the Ballistic Research Laboratory's new High Rate servohy-
draulic test apparatus.

Using a linear elastic model, the apparatus stiffness is determined to be about 92 kN/mm.
The strain energy absorbed at yiel I for a "typical" propellant grain is 7 times greater than the energy
stored in the apparatus, so that the. complete post-failure stress versus strain curve can be traced
using the servohydraulic test apparatus. The compressive moduli determined with the servohydraulic
apparatus compare favorably with those determined using the Drop Weight test apparatus at a strain
rate of 250 per second. However, the post-failure behaviors of M30 and XM39 tested on these appa-
ratuses do not compare well, and are probably a consequence of differing input strain histories im-
parted to the specimens on each of the apparatuses in the post-failure regime. This hypothesis might
be verified by simulating a strain history input from a typical Drop Weight test on the servohydraulic
apparatus, and observing whether the post-failure responses are comparable.

The compressive modulus, yield stress, and absorbed strain energy at yield all increase for
these propellants as a function of strain rate, whereas the yield strain remains relatively constant and
independent of strain rate. The M30 and XM39 propellants macroscopically failed by fracture at all
strain rates tested. The JA2 propellant did not fracture but macroscovically flowed during the entire
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deformation history. Microfracturing could be a mechanism for macroscopic flow and ductility so
that detailed microstructural observations are necessary to determine when and if fracturing begins,
since it is at this time that additional surface area becomes available for burning.

A preliminary viscoelastic characterization indicates that all three propellants exhibit nonlin-
ear i,ehavior. Since the specimens contain perforations, both a structural and material contribution to
the nonlinearity is present. In order to obtain stress homogeneity within specimens, testing for
constitutive properties is normally performed on solid specimens. This may not be valid for propel-
lants since the extrusion process imparts a directional anisotropy oriented along the grain axis not
present in solid grains. For the present then, we will consider these tests as "pseudo" constitutive
tests, the results of which are no better than any material which contains voids, large pores or other
internal inhomogeneities.

The room temperature secant and relaxation moduli for these propellants can be represented
by a power law in time for str= i rates which range from 10-2 to 10" sec'. The relaxatioi moduli
determined from tests at strain rates greater than 250 sec" are obtained from Split Hopkinson Bar
tests' and are linearly extrapolatable from the servohydraulic test results conducted at lower strain
rates.

8. FUTURE WORK

8.1 Microstctural Observations. Future work should focus on detailed scanning electron
ilroscope and optical microscope observations of the deformation mechanisms to determine when

iric•ofracturing begins to occur in these propellants. A vacuum impregnation epoxy technique
rr~ighr be used to help maintain grain integrity, since these propellants are relatively soft and can be
damaged during preparation for optical examination. The technique has been used for examining
deformation mechanisms in crystalline materials and involves vacuum impregnating deformed speci-
mens with dyed epoxy, hardening, and finally thin-sectioning and polishing the specimens. Tests
where specimens are deformed to fixed amounts of total strain will permit the characteri ation of mi-
crostructural changes within the propellant, and determine when and under what conditions fractures
begin to form. Mini closed-bomb tests should also be an integral part of the testing program, so that
we can correlate the combustion characteristics of propellants, deformed to fixed amounts of total
strain, to the macroscopic mechanical property parameters determined from the stress versus strain
curves.

8.2 Interior Ballistics Modeling. Interior ballistics modeling will require data which char-
acterize both the constitutive properties and a generalized failure criterion for propellants. A nonlin-
ear viscoelastic constitutive characterization of the propellant which includes a damage model is
presently being developed; a generalized failure criterion based on stress or strain invariants will
requi, tests performed in compression, tension and torsion. The development of a generalized
failure criterion is necessary since propellant grains are subjected to combined stress states within
the gun cartridge during the ballistic cycle.
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APPENDIX A:
REPRESENTATIVE STRESS VERSUS STRAIN

RESPONSE FOR JAI, M30, AND XM39

23



INTE1~JfONALLY LEFr BLANK.

24



100.0

80.0

250 Ile

60.0

too

40.0 -

20.0-

0
10.0 20.0 30.0 40.0 80.0

Stratn (PRct)

Figure Al. Representative Stress versus Strain Response for JA2

100.0 -0-

00.0

40.0

20.0 .61

0,I 4. i i

10.0 20.0 30.0 40.0 SO.0

straLn (pat)

Figure A2. Representative Stress versus Strain Response for M30

100.0

00.0

40.0 -

.0.

10.0 20.0 30.0 40.0 50.0

atraiL (pat)

Figure A3. Representative Stress versus Strain Response for XM39

25



INTENTONALLY LEFT BLANK.

26



APPENDIX B:
CUMULATIVE ABSORBED STRAIN ENERGY DENSITY MAPS

27



INTENTONALLY LEFT BLANK

28



Figure B1. Cumulative Absorbed Strain Energy Density Map for JA2
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Figure B2. Cumulative Absorbed Strin Energy Density Map for M30
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Figure B3. Cumulative Absorbed Strain Energy Density Map for XM39
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APPENDIX C:
INCREMENTAL ABSORBED STRAIN ENERGY DENSITY MAPS
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Figure Cl. Incremaental Absorbed Strain Energy Density Map for JA2
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Figure C2. Incremental Absorbe Strain Energy Density Map for M30
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Figure C3. incremnental Absorbed Str-ain Energy Density Map for XM39
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APPENDIX D:
RELAXATION MODULI FOR JA2, M30, AND XM39 PROPELLANTS
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FigureDl. JA2 Relaxation Moduli
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Fig=reD2. M30 Relaxation Mioduli

4-

3A

Es( t)
z~E( t)

(n

0

0 ~2-

Es(t) =1413r t *Ot 5 strain
Es(t) = 891 r-01  * 10 f strain
Es(t) = 407 r-10 1 20 strain
Es(t) = 240 r-O" -6 30 %strain

-2 -1 0 1 2 3 4 5

Log 10 Time (msec)

42



Figure D3. XM39 Relaxation ModUli
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Office of Central Reference ATTN: L-324, M. Constantino

Dissemination Branch PO Box 808

Room GE-47 HOS Uvermore, CA 94550-0622

Washington, DC 20505 1 Olln Ordnance

AFATLUDLYV V. McDonald, Ubrary

Eglin AFB, FL 32542-5000 PO Box 222
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ATTN: L-355, M. Finger 1 Universal Propulsion Company

PO Box 808 ATTN: H. J. McSpadden
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